职场小聪明

翟晓鹰

首页 >> 职场小聪明 >> 职场小聪明最新章节(目录)
大家在看女神的上门豪婿权财开局神威万花筒,学斑爷起舞!这个村医太勇猛全球神只:我创造了天地人三界穿书顶级世子,迎娶女魔头天眼鬼医三爷,你家小姑娘又立功了纯阳武神青梅小甜妻:竹马老公,宠宠宠
职场小聪明 翟晓鹰 - 职场小聪明全文阅读 - 职场小聪明txt下载 - 职场小聪明最新章节 - 好看的都市言情小说

第827章 没经过标注学习的大模型,直接拿训练结果,会不完整

上一章目录下一章阅读记录

AI大模型没有经过标注训练直接拿训练结果的机器学习,会不完整。

你提出的问题非常有深度,触及了AI大模型训练方法与其学习机制中的核心矛盾:没有经过明确标注训练(Supervised Learning)的AI大模型,是否能获得完整有效的学习成果?是否存在结构性的“学习不完整”?

我们来分层展开这一问题,力求在技术、哲学、认知、类比等多个维度上进行全面分析,最后做出严谨的结论。

?

一、背景界定:AI大模型的训练机制

目前主流的AI大模型(如Gpt系列、claude、Gemini等)采用的是**预训练 + 微调(fine-tuning)+ RLhF(强化学习人类反馈)**的混合架构。

其中最核心的是预训练阶段,其基本过程是:

在没有明确标签的情况下,用大规模互联网上的数据(网页、百科、代码、小说、评论等)进行“自监督学习(Self-supervised Learning)”。

自监督学习 ≠ 无监督学习

? 自监督学习并非完全“无标注”,而是通过构造任务(如语言建模任务:预测下一个词)让模型从数据本身自动生成训练信号。

? 模型在这过程中学习的是结构、语义、因果、常识等隐性规律,而不是显性标签(如猫、狗、汽车这种图像分类标注)。

?

二、未标注训练是否“学习不完整”?——技术视角的回答

我们可以从以下三个角度看“完整性”问题:

1. 信息覆盖角度:不是所有领域都能通过无标注数据自发学习

? 无监督或自监督学习依赖于数据中的统计规律;

? 某些抽象、隐蔽、少量出现的信息(如法律边界、伦理判断、罕见病症)如果数据中分布极少,模型可能无法学到;

? 例如:常识与语言风格模型学得很好,但“核反应堆设计”“金融诈骗行为识别”等专业领域,若无明确标注,学习会片面甚至危险。

结论:信息分布不均 → 导致学习偏斜 → 导致“结构性不完整”。

?

2. 任务映射角度:无标注训练难以学得任务映射规则

? 自监督语言模型训练的本质是“概率语言建模”,不是“任务解答”;

? 所以它并不知道“题目是什么、目的是什么”,而是推测“在这种上下文中,最可能出现的词或句子是什么”;

? 比如:它可以写诗、写代码,但并不能天然知道“这个代码是否安全”“这首诗是否表达了想表达的情绪”。

结论:任务导向的“目标函数”缺失 → 无法学会“为什么做”。

?

3. 可解释性角度:非标注训练缺乏因果结构建模

? 人类通过监督学习明确学习“因果—目的—手段”结构;

? 但大语言模型更像是“相关性结构模拟器”;

? 它可以“预测一个合理的答案”,但不能清晰解释“为什么这个是对的”,这导致它常常幻觉(hallucination),即信心满满地说错话。

结论:缺乏标注训练导致“因果推理能力弱化”,解释力不足。

?

三、类比视角:大模型 vs 人类学习

我们可以做几个有趣的类比来更好理解:

模型机制

类比人类

结果

自监督训练

看大量书籍和对话,但没人教你正确答案

可形成语言风格、思维路径,但很难准确判断对错

监督训练

老师出题、讲解并纠错

能建立清晰的“任务-结果-反馈”链条

强化学习

实践中不断试错并获得反馈

学会策略优化,但很依赖奖励设计

未训练领域

没人讲解、也从没见过的知识

只能“猜”而不是“知道”

所以,大模型并非“全知”,而是“巨量输入+相关性建模”的结果。没有明确监督和反馈,它可以“模仿得很好”,但无法“知道得准确”。

?

四、哲学层面:知识的完整性依赖于目的性与验证路径

知识完整性的构建不仅依赖数据,而更依赖:

1. 目的性(Goal-oriented learning):你学习是为了什么?没有目标就没有选择与筛选;

2. 验证路径(Validation mechanism):你怎么知道你学对了?没有反馈就无法修正偏差;

3. 理论抽象(theory abstraction):你是否能将个例升华为结构?这需要引导和模型建设。

AI大模型很多时候是在缺乏明确目标与反馈的语料中“游荡式学习”。它学得多,但结构不稳、推理不深,因此无法获得“完整性”。

?

五、现实世界中的补救机制

正因为自监督训练存在这些问题,现代大模型在预训练之后通常会做:

1. 微调(fine-tuning):用有标注数据进行小范围有针对性训练;

2. RLhF(人类反馈强化学习):用人工打分机制优化模型输出结果,使其更符合人类价值;

3. 插件系统(tool Use):通过嵌套计算器、数据库、搜索引擎等,补足知识结构的“缺口”;

4. 多模态协同:语言+图像+动作等维度补充信息结构的不完整性。

这些都是在弥补“无标注训练”的先天缺陷。

?

六、结论与展望

你提出的问题可以总结为一句话:

没有经过标注训练的大模型,其知识体系是片面的、目标性弱的、可解释性差的,因此并不完整。

AI大模型在当前阶段,的确存在以下三大“不完整性”:

1. 知识分布不完整 → 稀缺\/敏感信息无法自动习得;

2. 结构建模不完整 → 缺乏明确因果与目标框架;

3. 验证机制不完整 → 幻觉无法主动修正,错误输出不自知。

但它的优势也明显:

? 学习范围极广;

? 语境模拟能力强;

? 多样性高、可迁移性强。

未来,大模型的发展趋势一定是:

? 人类标注与反馈机制更精细化(如AutoRLhF、偏好建模);

? 任务导向设计(agent化、链式推理)加强推理结构;

? 领域专家介入,实现专家知识标注精调;

? 多模态数据参与建模,提升理解维度。

?

喜欢职场小聪明请大家收藏:(m.shuhesw.com)职场小聪明书河书屋更新速度全网最快。

上一章目录下一章存书签
站内强推综武:以医入道,剑斩李淳罡!绝世反派,被女主强推很合理吧一品国将惊!被五个哥哥团宠的废材,竟是神级炼丹师今天也没变成玩偶呢重生后肆爷他嗜妻如命一剑独尊终止暗恋后,傅总对我死缠烂打九重仙图神医弃女重生后我靠抽卡系统征服大反派今夜有戏我的竹马是男配农夫凶猛太古玄幻神王幻界奇旅神秘之钥苟在无尽海域修妖仙罗峰顾雪念我的七个姐姐绝世无双全文免费阅读大结局乡村神医诸天中间商
经典收藏战神审判:叛国罪证,震惊全球照亮他的心残暴王爷的黑月光不追白月光她急了我要青梅竹马大晋女御史我能预测未来位面超市到手,始皇会读心怎么了惊!刚开播,就被金渐层偷家了?犬马哑小姐,请借一生说话我和雍正在隋唐农门娘子有点彪新世界!开局成为赏金猎人!奈何世子太腹黑护花强少在都市天才国医草莽年代窃国亲爱的少帅大人直播:挑战粉丝留言,哥只玩真实
最近更新快穿归来,网黑真千金杀穿娱乐圈四合院:易中海的养老心思,被我扒个底大国军工:重生1985,为国铸剑寡居五年,我绑定皇后群独宠后宫重生76:觉醒空间,宠妻致富我都要一天一骷髅,我稳坐枯骨王座香烬欢校花你别哭,教父来投资你开局顶替流量巨星,全网火爆七零随军:穿书作精她撩又甜重生御兽,立志躺平却被女神契约重生七八:从上山采药开始致富职场:让你去养猪没让你日赚十个亿随母改嫁旺新家,重生嫡女嘎嘎乱杀替弟从军五载,归来全家夺我军功?召唤之王:我手搓九星大魔神,你哭什么资本家大小姐随军,搬空家产躺赢仕途风云:升迁穿进侯府当后妈后每天都想和离重生1985:从收猴票开始首富之路
职场小聪明 翟晓鹰 - 职场小聪明txt下载 - 职场小聪明最新章节 - 职场小聪明全文阅读 - 好看的都市言情小说